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a  b  s  t  r  a  c  t

This  paper  describes  a  model  based  method  for real  time  battery  cell  state-of-charge  (SoC)  estimation
using  linear  parameter  varying  (LPV)  system  techniques.  For  this  class  of  methods,  the  applicable  struc-
ture is  one  in  which  the  input  to  output  dynamics  of  the  battery  can  be described  by  a discrete  parameter
varying  state  variable  model  that  includes  the  SoC  as  a  state.  Within  this  context,  the problem  of  state-
of-charge  estimation  is  viewed  as  a state  estimation  problem,  so  that  a state  estimator  is  designed  using
eywords:
ithium ion batteries
oC estimation
tate estimator
inear parameter varying systems

the model.  An  LPV  system  technique,  combined  with  input  to state  stability  criteria,  is used  to  analyze
the  stability  and  performance  of  the  estimator.  Compared  with  algorithms  available  in the  current  litera-
ture, such  as those  employing  an  extended  Kalman  filter  and  sliding  mode  observers,  this  method  offers
good  performance  with  a  guarantee  of stability,  and  possesses  user  friendly  tuning  with  low  computa-
tional  complexity  for easy  on-board  implementation.  Experimental  results  are  given  which  validate  the
proposed  methodology.
. Introduction

As hybrid and electric vehicle technology advance further, auto-
otive manufacturers have adopted lithium ion batteries as the

lectrical energy storage device of choice in current and envisioned
ehicles. These high-capacity, high-power batteries provide signif-
cant improvement in terms of energy and power density when
ompared to NiMH and lead-acid batteries used in previous gener-
tions of plug-in hybrid electric vehicles (PHEVs), hybrid electric
ehicles (HEVs) and electric vehicles (in total, these classes are
eferred to as P/H/EVs). However, the lithium ion chemistry is one
uch that even mild over-charging or over-discharging can result
n catastrophic failures or premature aging [1].  Therefore, the cur-
ent strategy to prolong the life of the battery pack is to use the
atteries in a conservative fashion. On the other hand, utilizing the
atteries to the full extent of their capabilities can provide better
uel economy, drivability and reduced cost (for example, resulting
n a smaller battery pack). One solution to simultaneously maxi-

ize both battery life and still garner the highest utility from the

atteries is to have an effective battery management system that
an operate closer to the safety limit to maximize gains.
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One of the most important and yet difficult problems in design-
ing an effective battery management system is the estimation of
the state-of-charge (SoC) of the battery pack. In previous gener-
ations of HEVs, the battery pack is operated in charge-sustaining
mode, usually in a small range around 75% (often 60–85%). In such
applications, the margin of error is large because the batteries are
operated relatively far from their safety limits. With the advent of
PHEVs, battery packs often must be used in capacity ranges down
to around 25% SoC in charge-depleting mode and then operated in
charge-sustaining mode around 25%. Having a more accurate SoC
estimate means that even when the batteries are near the limit-
ing SoC, the entire hybrid system can still be controlled so that
performance is not compromised by the safety systems, which
operate by curbing battery usage when voltage limitations are
violated.

Estimating the SoC accurately in real time is a challenging prob-
lem. Formally, SoC is defined as the ratio of available ampere-hour
(Ah) to the total Ah available when the battery is fully charged
(namely, the capacity). When the current through the battery is
measured precisely, the SoC (herein represented by the variable z)
can be calculated via a Coulomb counting process in the manner

z(t) = z(0) − 1
K

∫ t

I dt, (1)

0

where K is a factor that that is inversely proportional to the capacity
of the battery. However, because measurement of electrical current
is always corrupted by noise, the integration operation results in a
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Nomenclature

� e disturbance and uncertainty in the error dynamics
of the observer

Ae system matrix for the error dynamics of the observer
� slope of a secant line on the OCV to SoC function f
�T  maximum change of temperature in one sampling

event
�{A, B, C, D} uncertainties in system matrices
.̂ estimated quantity from the observer – i.e. ẑ is the

estimated SoC
.̃ error variable between estimated and true
{A, B, C, D} state space system matrices for the dynamic volt-

ages in the battery model
Ce extended output system matrix
Cn nominal capacity (Ah)
f open circuit voltage function
I battery current (A)
id current direction (0/1 = charge/discharge)
Ke overall observer gain
Kx observer gain for the dynamic voltage states
Kz observer gain for SoC state
Lf lower bound for �
P positive definite matrix in the Lyapunov equation
Pij : i = {0, 1}, j = {c, d} components of the P corresponding to

temperature and current direction
Q positive definite matrix
T cell temperature
Ts sampling time (s)
u input signal to the model (current)
Uf upper bound for �
V Lyapunov function defined for the observer
Vh hysteresis voltage
Voc open circuit voltage
w, v input and output disturbances
X states representing dynamic voltages in the battery

model
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z state representing battery SoC (%)

rift of the estimate away from the true value over time. Addition-
lly, because capacity of the battery degrades over time, current
ntegration, which depends on capacity, will also become inac-
urate. Alternatively, one could measure the open circuit voltage
OCV) of the battery because it has a near one-to-one correspon-
ence with the SoC and is independent of the capacity. However,
attery dynamics dictate that the OCV can only be measured after
he battery has been resting for a significant period of time. There-
ore, the OCV is not a useful measurement technique when the
attery is under continuous operation. Furthermore, for batteries
hose OCV is relatively flat with respect to SoC, this method can

e difficult to apply.
Aside from direct (or indirect) measurement, the SoC can also

e estimated using other techniques (for a brief summary see [2])
hich improves upon the shortcomings of the measurement tech-
iques. The study [3] proposes a fuzzy logic method where the
oC is determined using the frequency response of the battery.
his, however, is not practical in an on-board setting where the
ontroller is prohibited from injecting a sinusoidal signal into the
attery pack. Similarly, [4] provides a fuzzy logic current integra-
ion method where the current integration is adapted based on

he operating conditions. Although more practical than the pre-
ious method, this approach still suffers from the drawback of
he integration process, where the SoC estimate experiences drift
ver time. Black box approaches such as those employing neural
 Sources 198 (2012) 338– 350 339

networks have also been used for SoC estimation; for example,
[5] shows an estimator constructed using an artificial neural net-
work. These methods can often produce very good results after the
network is trained sufficiently. However, the training process is
laborious (sometimes non-convergent), especially if the estima-
tor is expected to function under various operating conditions.
Furthermore, the black box nature makes these estimators less
intuitive.

An alternative class of algorithms used for SoC estimation is
one utilizing model based techniques. In these methods, control
theoretic techniques are applied to a control-oriented model to
estimate the SoC. Generally speaking, the term control-oriented
usually refers to a class of models that are of low-order and have
a low-degree of nonlinearity, yet have sufficient accuracy for the
subsequent control design to produce good results with the non-
linear plant. There are several examples of these algorithms in
the literature. First is the extended Kalman filter (EKF) approach
[6,7], wherein a slightly nonlinear discrete state space model for
the battery is identified, which includes the SoC as a state. Then
an extended Kalman filter is applied to the model to estimate the
total state. The primary drawback of this approach is the fact that
an error covariance matrix (whose size is the order of the model)
must be propagated through the system at each sampling instance
to calculate the correction gain. This results in a significant num-
ber of calculations that may  not be suitable for implementation.
In addition, because the EKF requires linearization of the plant at
each time instance around an unknown operating point (namely
the SoC), convergence is not guaranteed.

Another model based approach that has shown success is the
sliding mode observer approach; [8,9] show two variations. In
this approach, a linear battery model, simplified as compared to
the model used in [6],  is used to describe the battery dynam-
ics. Then a sliding mode observer is used to estimate the SoC.
By allowing the sliding mode gain to dominate the plant uncer-
tainty, this method is able to guarantee that the estimator has
desirable convergence properties. The estimation results are good
for the data used with this method. However, explicit results are
not given for regions where the battery is operated at low tem-
peratures. In our experience, because battery parameters (such
as internal resistance) change significantly when temperature is
lowered, even when using a sliding mode observer whose gains
are tuned to dominate the maximum uncertainty, the estima-
tion errors that result are often quite large. Furthermore, because
temperature is a measured quantity, it makes sense that adapt-
ing the estimator gains with respect to temperature can improve
performance.

In this paper, a robust SoC estimator is designed using a linear
parameter varying (LPV) estimator. The model used to describe the
battery dynamics is a discrete LPV state variable model which can
be obtained via methods discussed in previous work [10–12].  The
parameters on which the LPV model operates are SoC and tem-
perature; such parametric variation built into the model improves
the accuracy over various operating conditions to reduce the error
in the estimation, especially at lower temperatures. Because the
SoC is a parameter of the plant and unknown, this structure treats
the plant as uncertain; as such, the resulting estimator must be
robust to this uncertainty. In addition, the effect of the uncer-
tainty can be analyzed explicitly using input to state stability
criterion [13–16].  There are several advantages to this design.
First the computational complexity is much less than the EKF
approach because no error covariance matrix is propagated for-
ward. Second, stability of the estimator can be guaranteed while the

properties of the estimation error can be analyzed explicitly. After
the models are developed and discussed, the estimator design is
demonstrated using experimental data collected from two  different
batteries.
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. Battery model

In this section, the model of the battery is described. Because
he final algorithm is intended for on-board implementation, the
attery model is assumed to be in a discrete state variable form
iven as[
z[k + 1]

X[k]

]
=

[
1 0
0 A(T, id)

][
z[k]
X[k]

]
+
[ −Ts

36Cn
B(T, z, id)

]
(u[k] + w[k])

y[k] = f (T, z) + CX[k] + D(T, z, id)u[k] + v[k],

(2)

here T is the temperature, z is the SoC, id is the current direction,
s is the sampling time, Cn is the nominal capacity, X ∈ nR is the
tate vector representing the battery dynamics, f is the open circuit
oltage as a function of T and z, and w and v are zero mean Gaussian
oise disturbances that affect the input and output, respectively. In
ddition, A, B, C, D are the state variable system matrices of appro-
riate dimensions for the dynamic state X. Note here that the matrix

 is assumed to be independent of z (the SoC). Previous modeling
esults [17] have shown that the dependence of A on z has only a
ery minor effect on the accuracy of the model. In addition, because

 is a quantity to be estimated, it must be considered unknown.
s such, including this term does not improve the accuracy of the
odel.
This particular battery model structure represents a common

pproach in approximating the battery dynamics. It is based on
he physical intuition that the output voltage of a battery is com-
osed of an OCV, a set of dynamic voltages that are the results of
lectrochemical effects like charge transferring and diffusion, and a
oltage resulting from the internal resistance. The combination of
he dynamic voltages and the voltage corresponding to the internal
esistance is commonly referred to as the overvoltage of the bat-
ery. An additional component often included in battery models of
his type is the hysteresis voltage, which describes the fact that the
ested battery OCV at a given SoC and temperature can be different
epending on the previous excitation. The dynamic equation most
ommonly used to describe this phenomenon (see [6,18] for exam-
le) is a first order dynamic equation in the SoC. For instance, the
ontinuous time equation can be written as

˙ h = � |I|(H(ż, T) − Vh), (3)

here Vh is the hysteresis voltage, � > 0 provides the time constant,
nd H is a function that provides the maximum hysteresis voltage
or a given SoC and temperature. Examining this equation reveals
hat if the current input is zero, then the equation reduces to

˙ h = 0. (4)

he discrete form of this equation is

h[k + 1] = Vh[k], (5)

hich is precisely the same form as the dynamic equation for z
and consequently for the OCV) when the current is zero. Because
he battery terminal voltage reflects the combined effect of the OCV
nd the hysteresis, one cannot distinguish between the effects of
he OCV and hysteresis based on the output voltage when the cur-
ent is zero. In other words, if the hysteresis effect is included in
he model, then under zero current conditions, the system is not
bservable from the output. As such, a hysteresis element cannot
e included in a state estimator design, and is therefore not included

n the remainder of this paper. Note that this does not mean that the
ysteresis effect must be ignored altogether. If a hysteresis model
s available in real time, one can simply remove the hysteresis volt-
ge computed by this model from the battery voltage measurement
rior to applying the state estimator. In so doing, the influence of
he hysteresis can be removed from the estimated states.
r Sources 198 (2012) 338– 350

One aspect of the model that is not addressed in this paper is the
model adaptation with respect to aging. The main reason for omit-
ting this is the lack of experimental aging data at the present time.
The problem of modeling parameter variation as a result of aging is
a topic that will be studied as part of the future work. One possible
approach, such as already proposed in previous works involving
the extended Kalman filter [6],  is to augment the model states with
critical parameters such as internal resistance and capacity. The
estimator can then be designed to estimate these additional states
as well as the SoC. The overall system is capable of adapting to the
aging of the battery.

The model described here can be identified in two  ways. The
first method is to identify a parameterized equivalent model such
as done in [10]. In this case, typically an equivalent circuit model
consisting of an OCV, an internal resistance, and multiple pairs of
parallel RC circuits is used. The number of RC circuit pairs depends
on how accurately one wants to model the battery. Typically, a
second or third order model is sufficient for capturing the basic
charge transfer and diffusion dynamics in the frequency range of
10 mHz–10 Hz. Even though the slower diffusion dynamics can
reach as low as 10 �Hz, these dynamics are difficult to model for this
type of application, where the model structure must be appropriate
for control design. For instance, often utilized elements such as the
Warburg impedance or transmission line cannot be used here with-
out a meaningful time domain representation. However, the effect
of these unmodeled dynamics and uncertainty can be mitigated by
applying control theory. Also note that the optimal model order
may  be slightly different depending on temperature. However,
having different model order for different temperatures makes esti-
mator design very difficult. Therefore it is assumed that model
order is constant for all temperatures. The model constructed this
way  can be represented by a continuous-time differential equation,
which can be discretized (see Appendix A for more information
on this). Another method is to directly identify the model using a
black box identification technique (one example can be seen in [17],
where a subspace method is used to perform the identification).
The model that results is very similar to the discretized equivalent
circuit model. Once again, lower order models (such as second or
third order) are typically used to capture the basic charge transfer
and diffusion dynamics. For more information on the actual iden-
tification, interested readers should refer to the aforementioned
references.

3. Estimator design

In this section, the design of the SoC estimator is described. The
basic structure of this estimator is a state observer that uses the
voltage, temperature, and current measurements as feedback sig-
nals. Because the SoC is a state of the model, if the states of the
observer converge to the true states, SoC estimation is achieved.

The generic form of the state observer design is given as[
ẑ[k + 1]

X̂[k]

]
=

[
1 0
0 A(T, id)

][
ẑ[k]
X̂[k]

]
+
[ −Ts

36Cn
B(T, ẑ, id)

]
u[k] + Ke(y[k] − ŷ[k])

ŷ[k] = f (T, ẑ) + CX̂[k] + D(T, ẑ, id)u[k].

(6)

Note that this is precisely the form of a model with output feed-
back for correction. The exact form of the output feedback Ke will
be discussed later, except to note that it is a function of the dif-
ference between the estimator output and the measured voltage
output. Because w and v are unknown, they are not included in the
estimator. For estimator coefficients that depend on the SoC, the

estimated SoC ẑ is used in place of the true SoC z.

The output error ỹ[k] = y[k] − ŷ[k] can be computed as

ỹ[k] = f (T, z) − f (T, ẑ) + CX̃[k] + �D[k]u[k] + v[k],
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here X̃[k] = X[k] − X̂[k] and �D[k] = D(T, z, id) − D(T, ẑ, id). The
stimation error dynamics can then be computed as

z̃[k + 1]
X̃[k + 1]

]
=

[
1 0
0 A(T, id)

] [
z̃[k]
X̃[k]

]
+

[
0

�B[k]

]
u[k]

+
[ −Ts

36Cn
B(T, z, id)

]
w[k] − Ke(f (T, z) − f (T, ẑ) + CX̃[k]

+�D[k]u[k] + v[k]). (7)

ext, define

[k] = f  (T[k], z[k]) − f (T[k], ẑ[k])
z[k] − ẑ[k]

. (8)

or a given T, the function f must satisfy a basic property of the OCV
unction in that it is monotonically increasing with respect to SoC.
ecause � represents the slope of a secant line on the graph of f and
, the monotonicity of f implies that � is always positive. Because
he domain of T and z are both compact, ∃Lf, Uf > 0 such that

 < Lf ≤ �[k] ≤ Uf , (9)

k ∈ N. Note here that Lf and Uf can also be functions scheduled on
emperature. However, because the shape of the OCV functions is
ikely to be similar even for different temperatures, � is primarily a
unction of the SoC rather than temperature. Therefore the variation
f Lf and Uf with respect to the temperature will be small, and thus
or the sake of simplicity, Lf and Uf are taken to be constants.

Given this,

 (T, z) − f (T, ẑ) + CX̃[k] = [�[k] C]

[
z̃[k]
X̃[k]

]
� Ce[k]X̂e[k].

n other words, the output error can be written as a linear func-
ion of the estimation error, with the exception that part of the
inear coefficient, namely �, is time varying and unknown (since
t involves z which is the quantity to be estimated). This suggests
hat the estimator to be designed can be considered a linear state
stimator that is robust to variations in �. In other words, one can
elect Ke as a linear function of the output error and design it in such

 way that the estimator converges regardless of the true values of
. Thus, Ke can be written as

e =
[

Kz(T, id)
Kx(T, id)

]
, (10)

here the components Kz and Kx could depend on T and id.
The error dynamics can now be written as

z̃[k + 1]
X̃[k]

]
=

[
1 0
0 A(T, id)

] [
z̃[k]
X̃[k]

]
+

[
0

�B[k]

]
u[k] +

[ −Ts

36Cn
B(T, z, id)

= Ae[k]

[
z̃[k]
X̃[k]

]
+ � e[k], 

here

e[k] =
[

1 − Kz� −KzC
−Kx� A(T, id) − KxC

]
, (12)

e[k] =
[

0
�B[k]

]
u[k] +

[ −Ts

36Cn
B(T, z, id)

]
w[k] −

[
Kz

Kx

]
(�D[k]u[k] + v[k]).

(13)
ote that Ae determines the dynamics of the error and � e repre-
ents the disturbance or uncertainty that ultimately determines the
ize of the estimation error. Further note that for brevity in nota-
ion, the dependence of Kz and Kx on T and id is not expressed in
 Sources 198 (2012) 338– 350 341

k] −
[

Kz

Kx

] (
[�[k] C]

[
z̃[k]
X̃[k]

]
+ �D[k]u[k] + v[k]

)

(11)

(11), even though Kz and Kx are assumed to be functions of these
scheduling variables.

Heuristically, several observations can be made immediately.
For linear systems, if the unforced system (namely � e = 0) has
asymptotically stable dynamics, then with bounded input, the state
response will still be bounded (input to state stability). Therefore,
the purpose of Ke is to make the unforced system asymptotically
stable. For a parameter varying system, this is not as simple. But
because the parameter variation with respect to T is very slow,
the idea of gain scheduling suggests that placing the eigenvalues
of this matrix inside the unit circle will likely stabilize the sys-
tem. Along the diagonal of Ae, there are two portions: 1 − Kz� and
A(T, z, id) − �A[k] − KxC. If |Kx�| � 1 and Kz > 0, then the eigenval-
ues of Ae will be very close to 1 − Kz� and the eigenvalues of A(T,
z, id) − �A[k] − KxC. Because A has stable dynamics, the function of
Kz is to provide a greater margin of stability and counter effects of
unmodeled dynamics. If this is accomplished, then the system will
be stable. To ensure that the estimation error is as small as pos-
sible, � e must be as small as possible. With the exception of the
last term of � e, the other terms are the result of model uncertainty
and noise, which cannot be influenced once the model is given. The
last term in (13) contains uncertainty and disturbance multiplied
by Ke (in view of (10)). This suggests that if Ke had relatively small
magnitude, greater robustness to uncertainty could be expected.
However, because Ke is also used to place the poles, this also means
that a faster closed loop response would come at the cost of higher
sensitivity to uncertainty and disturbance.

Theses arguments can be formalized via Lyapunov theory.
Define a parameter dependent Lyapunov function V by

V [k] = X̃T
e [k]P(T, id)X̃e[k], (14)

where P ∈ n + 1 × n + 1R  is a positive definite matrix. Here, P is
assumed to depend on T and id, even though if a choice of P that
is independent of the parameters could be found, then it can and
should be used.

For a given V, we have

V [k + 1] − V [k] = X̃T
e [k](A

T
e [k]P[k + 1]Ae[k] − P[k])X̃e[k]

+ 2�
T
e [k]P[k+1]Ae[k]X̃e[k]+�

T
e [k]P[k + 1]� e[k].

Suppose that for some P(·), Q > 0, A
T
e [k]P[k + 1]Ae[k] − P[k] <

−Q , ∀k. Note here that Q can be assumed to be independent of
the scheduling parameters because if a parameter dependent Q
exists, then because the domain of the parameters is compact, a

non-parameter dependent Q can always be found to bound the
parameter dependent Q. It follows that

V [k + 1] − V [k] = X̃T
e [k](−Q )X̃e[k] + 2�

T
e [k]P[k + 1]Ae[k]X̃e[k]

+ �
T
e [k]P[k + 1]� e[k]. (15)

Because the quadratic term on the right-hand-side of (15)

dominates for large X̃e, ∃m > 0 such that if |X̃e[k]| > m,  then
V[k + 1] − V[k] < 0. Therefore, X̃e will converge to a neighborhood
around 0. The size of this neighborhood depends on the magni-
tude of the remaining terms on the right-hand-side of (15), which
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s directly dependent on the magnitude of � e. This analysis con-
rms analytically the reasoning behind the previous argument on
he magnitude of � e.

This analysis also suggests that Ke should be selected so that the

MI  A
T
e [k]P[k + 1]Ae[k] − P[k] < −Q has solutions P(·), Q > 0. This

an be done using an LMI  solver that simultaneously solves for all
hree variables. However, such a process is generally very limiting
ecause Ke and P must be in a specific form for the LMI  solver to be
pplicable. Furthermore, because Ke also affects the performance
f the estimator in terms of convergence and disturbance rejec-
ion, the solution that an LMI  solver finds may  not be desirable. A
ractical solution is to use the idea of gain scheduling to find Ke and
hen confirm the stability of the resulting solution by checking the
MI  given previously. The strategy is to hold T constant and solve
or Ke and then schedule Ke with respect to T. This strategy makes
ense because the temperature process is slower than the electrical
rocess. Therefore the design problem reduces to that of selecting
e for various fixed temperatures and then interpolating the results
ith respect to temperature.

When designing Ke for a fixed temperature, the properties of
 can be used to significantly simplify the design problem. As
iscussed previously, the eigenvalues of Ae should be very close
o 1 − Kz� and the eigenvalues of A(T, id) − KxC. The eigenvalue

 − Kz�, which corresponds to the state z, determines the conver-
ence properties of the SoC component of the observer. Because

 > 0, Kz > 0 is used to bring this eigenvalue inside the unit circle.
he further inside the unit circle this eigenvalue is, the better con-
ergence property one has for the SoC. Because � is generally very
mall and Kz should also be small to reduce the effect of the dis-
urbance, 1 − Kz� is always positive and is generally very close to
he unit circle. Given this interpretation, it is easy to see that for
ll the values that � can take, � = Lf results in the worst perfor-
ance for this design problem. Therefore when designing Ke for a

xed temperature, the problem can be simplified by using � = Lf.
f the performance of the resulting estimator is good under this
onstruction, it will be even better for other values of �.

The overall design process for fixed temperature reduces to plac-
ng the closed loop poles of the estimator at a set of values that
rovide a good compromise between convergence speed and dis-
urbance rejection. Because disturbance rejection implies smaller

agnitude for the components of Ke, the poles selected should be
ery close to the original poles. This is particularly true for the state

 since the small magnitude of � requires a very large Kz to result in
 pole far away from the unit circle. Therefore it is usually advisable
o place the pole corresponding to z slightly inside the unit circle.

After the pole placement is done satisfactorily, the LMI  condition
esulting from the Lyapunov analysis must be checked to verify that
he closed loop system is stable. The LMI  in compact notation can
e written as

A
T
e [k]P[k + 1]Ae[k] − P[k] + Q 0 0

0 −P[k] 0
0 0 −Q

⎤
⎦ ≤ 0. (16)

his form is difficult to use because two time indices occur. There-
ore we make the simplification that P takes a linear functional
orm:

(T[k], id[k]) =
{

P0c + T[k]P1c if charging
P0d + T[k]P1d if discharging

. (17)

hen it is sufficient to check the LMI ⎤

A

T
e P(T, id)Ae[k] − P(T, {c, d}) ± �TP1{c,d} + Q 0 0

0 −P(T, id) 0
0 0 −Q

⎦≤0,

(18)
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where �T  is the maximum amount of temperature change that
can occur within one sampling period. The idea of (18) is that
given P(T[k + 1], id[k + 1]), P(T[k], id[k]) must be inside the range
P(T[k + 1] ± �T, {c, d}). However, because the dependence on T is
linear, it is only necessary to check the corner points of this range.
In particular, these are precisely the four points P(T[k + 1] + �T,  c),
P(T[k + 1] + �T, d), P(T[k + 1] − �T, c), and P(T[k + 1] − �T, d). There-
fore, instead of checking for all possible P[k + 1], P[k], it is sufficient
to only check these four possibilities. Following this approach, even
though the number of LMIs increases, the problem becomes much
more solvable.

3.1. A different look at SoC estimation

The SoC estimator design highlighted the two most important
factors that influence the design of any voltage-based SoC estima-
tor: the accuracy of the OCV function and the small slope of the
OCV function. A natural question to ask is whether or not we can
estimate the OCV instead of SoC to avoid dealing directly with the
accuracy of the OCV function. Indeed a similar state estimator con-
struction can be used to estimate the OCV based on the model. To
do this, we  first perform a change of coordinates to replace the state
z with a state that represents the OCV. Recall that the OCV is related
to the SoC and temperature via the function f. Let Voc represent the
OCV. Then

Voc[k + 1] ≈ Voc[k] − ıf

ız
(T[k], z[k])

Ts

3600Cn
I[k], (19)

using a first order Taylor expansion under the assumption that
�SoC and �T  are both small over each sampling period. Given (19),
the dynamic equation of the system can be written as[

Voc[k + 1]
X[k]

]
=

[
1 0
0 A(T, z, id)

][
Voc[k]
X[k]

]

+
[

ıf

ız
(T[k], z[k])

−Ts

36Cn
B(T, z, id)

]
(u[k] + w[k])

y[k] = [1 C]Xe[k] + D(T, z, id)u[k] + v[k].

(20)

The effect of this nonlinear change of coordinates is that the non-
linear function f is moved from the output equation to the input
coefficient. Using this form, we  can estimate the OCV using a state
estimator given as[

V̂oc[k + 1]
X̂[k]

]
=

[
1 0
0 A(T, ẑ, id)

] [
V̂oc[k]
X̂[k]

]

+
[

ıf

ız
(T[k], ẑ[k])

−Ts

36Cn
B(T, ẑ, id)

]
u[k] + Ke(T, id)(y[k] − ŷ[k])

ŷ[k] = [1 C]X̂e[k] + D(T, ẑ, id)u[k].

(21)

Note that in this equation, ẑ is an estimated SoC computed using
the estimated OCV and the inverse of the OCV function f. Define

Ae[k] =
[

1 − Kz −KzC
−Kx A(T, z, id) − �A[k] − KxC

]
. (22)

Note this is very similar to (12) with the exception that �[k] has
been replaced by 1. Just like Ae in (12), this matrix determines the
stability of the closed loop estimator. Consequently, the same anal-
ysis used previously can be used to conclude that if there exists
symmetric P and Q such that
A
T
e [k]P[k + 1]Ae[k] − P[k] < −Q, (23)

∀k, then the error dynamics will be input-to-state stable. What
is different about this linear matrix inequality is that it does not
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epend on �. In fact, if we assume that Ae does not depend on z, then
here is no uncertainty in this matrix inequality. Consequently, the
ole placement approach discussed previously can be applied very
asily. After placing the poles, the previous matrix inequality can
e used to ensure that the parameter variation of Ae does not cause
he system to go unstable.

The primary difference between this estimator and the previ-
us estimator used for SoC estimation is that the feedback is not
ffected by the quantity �. Consequently, the pole placement is not
s restrictive as is the case for the SoC estimation. Thus a natural
uestion to ask is why not just estimate the OCV and then use the
CV to calculate the SoC based on the inverse of f? The answer is

hat while this is certainly valid, the problem of the small slope of
 cannot be avoided altogether. When we calculate the SoC using
he OCV, the small errors in the estimated OCV become magnified
y the inverse function of f. In addition, because the derivative of

, which depends on the estimated SoC, is used as the input coeffi-
ient in the OCV equation, the uncertainty in the true SoC has the
ame effect as an input disturbance. Therefore, in either case, the
stimation result will depend on the accuracy of the OCV function
s well as the nonlinearity of df/dz.

This alternative estimation scheme does offer an advantage
hen compared to the direct SoC estimation scheme. When esti-
ating the SoC directly, we must be concerned about the estimate

xceeding the physical limits (over 100% or below 0%). Therefore in
ractical implementations, a saturation function must be used to

imit the resulting SoC. Because this saturation is performed directly
n a dynamic state, the stability properties can be altered. However,
f the OCV is estimated, then we are not concerned with setting
n artificial limit on the resulting estimate because the measure-
ent has the same units. A negative voltage, for example, will only

ncrease the feedback error which would prompt the estimator to
orrect the estimation accordingly.

.2. Comments

In the above, the design of the SoC estimator (as well as an OCV
stimator) is described in mathematical detail. Some important
oints that might otherwise be lost among the equations should be
e-emphasized. First, the analysis shows that for any voltage-based
oC estimator, the quantity that ultimately determines how well
he estimator will work is Lu, the smallest slope of the OCV func-
ion. Larger Lu will make the SoC more sensitive to voltage variation,

hich allows us to obtain more from the voltage measurement

ignal. Second, there is always a conflict between convergence
peed and tracking performance. Increased convergence speed will
nevitably decrease tracking robustness, while increased tracking

+
Voc C1 

R0

R1 

I(t)

VR 0 V1 
+-

Fig. 1. Equivalent circuit us
 Sources 198 (2012) 338– 350 343

robustness will result in a slower estimator. Hence the designer
must decide which attribute is more important. Furthermore, this
conflict also couples with the problems that arise when Lu is small.
In such cases, a faster convergence requirement can significantly
degrade the tracking robustness. Design examples are provided in
the next section to illustrate these issues more clearly.

4. Design examples

In this section, the design algorithms described previously are
illustrated using data collected from two separate batteries. Due
to chemistry differences, the estimator behavior is very different
in these two  cases. The differences highlight the design tradeoff
described in the previous section.

4.1. EIG battery

In this section, a constant temperature design example is
provided using data collected from an EIG battery that has a
capacity of 20 Ah and nominal voltage of 3.6 V. This battery uses
a Li[NiCoMn]O2 based cathode and a graphite-based anode. The
model of the battery is identified using the data collected from the
battery operating under an asymmetrical step profile. This model
includes both an OCV map as a function of the SoC and the dynamic
system matrices required by (2).  The OCV is measured by repeatedly
discharging the battery by 10% and then resting for 1 h to record
the OCV for that SoC. The SoC of the battery for the current pro-
file is computed by integrating a post-processed current (noise and
sensor offsets are removed).

The A and C matrices for the model equation (2) are given as

A =
[

0.9877 0
0 0.7954

]
C = [−1 − 1].  (24)

The SoC equation for the system (accounting for the capacity and
the sampling time) is given by

z[k + 1] = z[k] − 0.5
20 × 36

u[k]. (25)

Figs. 2–4 show the input coefficients b1, b2 and the internal resis-
tance D as functions of SoC and current direction, respectively. Fig. 5
plots the open circuit voltage as a function of the SoC.

Given these coefficients, a SoC estimator can be designed using
the method described in the previous section. First evaluate the

derivative of the OCV function f, shown in Fig. 6. As we can see
from this plot, this derivative is bounded between 0.004 V/% and
0.011 V/%. Therefore Ke can be designed for � = 0.004. In other
words, Ce = [0.004, C].

Cn

Rn

Vba tt

...

Vn
+

+

- -

-
ed for battery model.
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The next step is to select the pole locations. Aside from the inte-
grator pole in the state z (which is on the unit circle), the other two
poles are quite fast already. For example, the pole at 0.9877 will
cause an initial condition on x1 to reduce to less than 3% of its value
in 300 samples (150 s), which is quite fast for vehicle applications.
Therefore there is no need to select poles for these two states to
be much faster than their current values. Moreover, the penalty of
having faster poles is higher gains, which causes the system to be
more reactive to measurement errors and noise. Consequently, we
select [0.96, 0.72] as the pole locations.

The main question for the design is where to put the pole cor-
responding to the SoC. Clearly, the pole must be moved inside the
unit circle. The effect of the pole location can be seen using a sim-
ulation. First, artificial Gaussian zero mean random noise is added
to the current and voltage measurement. Then additional pulses
of various magnitude and time duration are added to the current
measurement. This simulates non-zero-mean measurement errors
that can mislead a simple current integrator. Fig. 7 shows an exam-

ple of the input disturbance. Note that the size of the disturbance
is quite large so that its effect is very significant on the system.
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Fig. 6. Derivative of the OCV function.
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Fig. 9. Pole at 0.99 causes high sensitivity to input/output disturbance.
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Placing a pole at 0.99 results in kz = 8.8740. The result of this
eedback gain is that the estimator converges very quickly from an
nitial error, evident in Fig. 8 where the estimator is used to correct
he SoC trajectory that was initialized incorrectly. After only 20
amples (10 s), the estimator is within 5% of the true SoC. However,
he cost of this is that the input and measurement noise can often
ause the estimation error to be quite large, which is seen in Fig. 9.

Next a much slower pole of 0.9991 is used, which results in
z = 0.8945. As expected, the convergence of the estimator is much
lower. As shown in Fig. 10,  the estimator converges from a very
arge initial error to within 5% of the true SoC in 1500 samples, or
pproximately 750 s. However, as seen in Fig. 11,  the disturbance
ow has a much smaller effect on the estimation error.

Note that stable experimental performance does not necessarily
ndicate stability under all operating conditions. Therefore, it must
e confirmed that the designs are stable for all other values of �. To
o this, P and Q must be found such that (18) holds for all � ∈ [Lf, Uf].
5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

samples [k]

es
tim

at
io

n 
er

ro
r 

[%
]

estimation error

SoC error
± 5%

Fig. 8. Pole at 0.99 results in quick convergence.

Fig. 10. Pole at 0.9991 results in a much slower convergence.
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Fig. 11. Pole at 0.9991 provides the ability to mitigate input/output disturbance.
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gration (noted as “measured”). Fig. 14 shows the estimation error
and the input disturbance. From these two figures, we can see that
because this battery has a much flatter OCV function than the EIG
battery example we have seen previously, the estimator is much

Table 1
Eigenvalues of the A matrix as functions of T.

Temperature (◦C) Pole 1 Pole 2

45 0.9920 0.9657
35  0.9916 0.9477
25  0.9906 0.9399
46 Y. Hu, S. Yurkovich / Journal of

o this end, the Matlab LMI  toolbox is used to find feasible solutions
or P and Q. For the pole at 0.99, the following P and Q result:

 =
[

0.1 −7.5 2.1
−7.5 5512.8 −69.3
2.1 −69.3 2080.1

]
Q =

[
0.0041 −0.6407 −0.1400

−0.6407 125.8615 23.2645
−0.1400 23.2645 480.5619

]
.

imilarly, for the pole at 0.9991, we have

 =
[

7.5 136.2 9.2
136.2 7020.4 −91.1

9.2 −91.1 2555.4

]
Q =

[
0.0163 −0.9209 −0.1554

−0.9209 140.2092 21.0865
−0.1554 21.0865 604.1492

]
.

he fact that P and Q exist (in both cases) concludes that the esti-
ator is stable using either set of gains.
Given that both designs are stable, it is up to the user to select

he design that best satisfies the design objectives. For vehicle appli-
ations, we note that very large SoC error is rare. Therefore, there
s very little need for fast convergence, and robustness to sensor
oise or offset is much more important. Consequently, the robust
erformance offered by the second design, albeit with slower con-
ergence, is a better solution.

.2. A123 26650 cells

In this section, a multi-temperature design example is pro-
ided using data gathered from an A123 26650 lithium ion
ron-phosphate battery, which has a LiFePO4-based cathode and
raphite-based anode. This particular battery has a capacity of
.15 Ah and a nominal voltage of 3.3 V. For this battery, a model

s identified for operating temperatures between −5 ◦C and 45 ◦C
nd for SoC between 10% and 90%. Once again the model contains

 measured OCV–SoC function. One simplification that is made is
hat the OCV is selected to be independent of temperature. This
s due to lack of data points in lower SoC regions for lower tem-
erature data. This simplification necessarily introduces estimation
rrors for lower temperature data. Nevertheless, when a more pre-
ise OCV function becomes available, it can simply be used in place
f this simplified OCV function to yield better results.

The datasets used with this battery are asymmetrical step pro-
les, containing current steps of 2 C, 4 C, and 6 C that are designed
o allow the battery SoC to traverse between 10 and 90%. The same
rofile is used for all temperatures in the range described pre-
iously. Note that the range limits on temperature and SoC are
ictated by the availability of experimental data. For example, on

 battery cycler, it is difficult to design a profile that reaches 0% or
00% effectively. Often because the current control is not exact, a
rofile that tries to reach 0% or 100% can cause the undervoltage
r overvoltage safety systems to stop the experiment before com-
letion. Given that the battery is never operated outside of the 10
o 90% range in vehicle operation, we limit the SoC to be within
his range. Nevertheless, if the dataset contains operation in other
anges, the methodology discussed here applies equally.

Once again, the first task is to evaluate the derivative of the open
ircuit voltage function with respect to SoC; the plot of the deriva-
ive is given in Fig. 12.  First note that the lowest point on the plot
ccurs in two sections: between 35% and 55% SoC and between
0% and 85% SoC, where the lowest value reached is 0.0004 V/%.
ompared with the same plot for the EIG battery seen in Fig. 6,
his number is almost exactly one order of magnitude smaller.
onsequently, this suggests that SoC estimation for this battery is

nherently a much more difficult problem than with the EIG bat-
ery. Furthermore, a large difference in magnitude exists between
he section where the lowest points occur and the remaining sec-

ions. This suggests that the SoC estimation will be more accurate
hen the battery is operating outside of these two zones. This is

omewhat welcome news because if the battery starts to approach
he low and high SoC regions where the df/dz is large, the estimator
SoC [%]

Fig. 12. A123 lithium ion iron-phosphate battery: slope of the OCV function f.

should be able to estimate the SoC more accurately, thus allow-
ing the energy management system information to avoid taking
the battery further into the low and high SoC regions. However,
this also has an undesirable aspect because the regions between
35% and 55% SoC and between 70% and 85% are precisely where
vehicles operate in charge-sustaining modes. The region between
70% and 85% is the region in which HEVs typically operate while
the region around 35% is frequented by PHEVs after they enter the
charge-sustaining mode. Consequently, this is not the ideal battery
for applying the SoC estimator design. Some of the results later will
reflect this analysis.

For the purpose of the estimator design, Lf from (9) can be
selected as 0.0004. The two eigenvalues of the A matrix as func-
tions of the temperature are given in Table 1. This table is obtained
by evaluating the eigenvalues of the A matrices in the identified
model at each temperature in the table. We  select the poles of the
closed loop matrix as [0.99, 0.91], which are smaller than the min-
imum values of the two  poles as functions of the temperature. The
reason for this choice is that we  require the closed loop system to
respond faster than the open loop system, but only slightly because
the state z will be relatively slow. The location for the pole corre-
sponding to z is selected as 0.996. While a faster pole would provide
faster convergence, because the Lf is so small, a very large feedback
gain would be required to achieve faster performance. Therefore
we opted for a slower pole and thus a smaller feedback gain.

To see the performance of the estimator with the choice of the
poles noted above, we  utilize the step profile data that was used
for modeling. For the 25 ◦C step profile data, Fig. 13 shows the
estimated SoC compared with the SoC calculated from current inte-
15  0.9916 0.9367
5 0.9921 0.9255
0  0.9972 0.9229
−5  0.9971 0.9126
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Fig. 15. SoC estimated using the 45 ◦C data compared with the measured data.
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ig. 13. SoC estimated using the 25 ◦C data compared with the measured data.

ore susceptible to disturbance and modeling errors. However, the
verall performance at room temperature is still very good as the
stimator provides accuracy with an error of less than 5%, except
nder offset disturbance.

In Figs. 15 and 16,  the same estimator is used with the 45 ◦C step
rofile data. Because the modeling error is even smaller at 45 ◦C, the
stimator performance at this temperature is even better than with
he 25 ◦C data.

Figs. 17 and 18 show the estimator performance over the 5 ◦C
tep profile data. In this example, we see that the performance is
orse than the room temperature case. There are two  reasons for

his. First, the modeling error at lower temperatures is much higher
han that at higher temperatures. Consequently, the magnitude of
he uncertainties that influence the size of the dynamic error is

uch higher. Second, the OCV function for lower temperatures is
ifferent from the OCV function at higher temperatures. Because
f/dz is very small for this battery, what might be considered small

ifferences in OCV can influence the SoC estimation significantly.
o investigate this further, we further moved the closed loop pole of

 out toward the unit circle to decrease the effect of modeling error
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Fig. 14. SoC estimation error and input disturbance with 25 ◦C data.
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Fig. 20. SoC estimation error and input disturbance with a slower pole.
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Fig. 18. SoC estimation error and input disturbance with 5 ◦C data.

n the estimator performance. As Figs. 19 and 20 show, the slower
ole dramatically reduced the convergence speed. However, the
racking performance after convergence improved dramatically.

An example will serve to illustrate the operation and perfor-
ance of the OCV estimator. The 25 ◦C data is used for this purpose.
s we can see from Fig. 23,  the estimated OCV converges to the
CV calculated based on the measured SoC, and tracks well after

 period of convergence. Therefore the OCV estimator discussed in
he previous section is a valid alternative to the SoC estimator.

The results here suggest that for this particular battery, the OCV
s a function of temperature should also be described. Otherwise,
he accuracy of the lower temperature estimation is significantly
ffected. Due to absence of a better OCV function, for further illus-
ration a multiple temperature example is provided that uses model
ased simulation data. In this example, a current profile that fea-
ures simultaneous temperature and SoC variation is used to excite
he model; subsequently, the estimator is used to estimate the

oC using the model output as inputs. As always, random signals
re added to both the input and output to simulate model uncer-
ainty and noise. As Figs. 21 and 22 show, despite the temperature
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where the output equation (battery terminal voltage) is given by
Fig. 23. OCV estimated using the 25 ◦C step profile data.

ariation and the uncertainty, approximately the same perfor-
ance in terms of estimation error results. After the estimator

onverges, the overall estimation error is kept well within 5% SoC.

. Conclusion

In this paper, a SoC estimator is designed using linear param-
ter varying system techniques. The advantages of this design are
hreefold. First, this estimator does not require iterative calculation
f the feedback gain such as in designs using the extended Kalman
lter. Because of this, the computational burden is relatively small
o that implementation is more feasible. Secondly, the stability of
he estimator can be confirmed analytically based on linear matrix
nequalities formulated using input-state stability criterion. Lastly,
he performance of the estimator, in terms of convergence and
racking, can be tuned very easily depending on user requirements.

A fundamental fact emerging form this work is that the most
mportant component of a voltage based SoC estimator designed
sing state estimation is the open circuit voltage of the battery.
his is the only component aside from direct current integration
hat provides the user with a reliable measure of the SoC. For bat-
eries such as the EIG battery whose OCV has relatively steep slope,

 small error can be tolerated since the voltage changes significantly
nough when the battery SoC changes. But for batteries such as the
123 (whose characteristics are common to all lithium-ion iron-
hosphate chemistry), the inherent flatness of the OCV makes it
ritical to have as good of an OCV model as possible. Consequently,
n important continuation of this work is to improve the OCV
odel, especially as a function of temperature. Such a model can

e obtained with a well designed measurement experiment. Even
hough such an experiment may  be tedious or time consuming, its
mpact on the accuracy of the estimator cannot be underestimated.
urthermore, the data from this experiment would lead to formu-
ation of a hysteresis model, which combined with an accurate OCV

odel would provide even better estimates.

ppendix A. Equivalent circuit model discretization
The equivalent circuit model used in [10] is provided in Fig. 1.
his model comprised of an open circuit voltage, an internal
esistance, and multiple R/C circuits that represent the battery
 Sources 198 (2012) 338– 350 349

dynamics. The dynamics of each parallel RC circuit are represented
by a first order differential equation of the form

dVi

dt
= −AiVi + AiBiI, (A.1)

where Ai and Bi represent the input coefficient and the time con-
stant, respectively. Note that Ai and Bi can be functions of the
parameters as well, but for the purpose of discretization, it is
assumed that the parameters do not change within each sampling
instance.

Because the OCV is a static function of the SoC, discretizing the
OCV dynamics can be done by discretizing the dynamics of the SoC.
The continuous-time dynamics of SoC denoted by z are given by

ż = − 1
3600Cn

I, (A.2)

where Cn is the nominal capacity of the battery.
The overall battery terminal voltage is given by the sum of all

the components

Vbatt = Voc − R0I −
n∑

i=1

Vi. (A.3)

Given a selected sampling period Ts and a continuous linear
system of the form

ẋ = ax + bu, (A.4)

where x, u ∈ R and the coefficients a, b and the input u are assumed
to be constant over each sampling period, the discrete equivalent
of the system is given by

x[k + 1] = e−aTs x[k] + b

a
(1 − e−aTs )u[k]. (A.5)

Using this fact, Eqs. (A.1) and (3) can be discretized as

Vi[k + 1] = aiV [k] + biI[k], (A.6)

Vh[k + 1] = �(I[k])Vh[k] + �(I[k])H(ż, T), (A.7)

where

ai = e−AiTs ,
bi = Bi(1 − e−AiTs ),
�(I[k]) = e−� |I[k]|,
�(I[k]) = 1 − e−� |I[k]|.

Eq. (A.2) simply represents an integrator, and can therefore be
discretized as

z[k + 1] = z[k] − Ts

3600Cn
I[k]. (A.8)

The complete model can then be written in state variable form as⎡
⎢⎢⎢⎢⎣

z[k + 1]
V1[k + 1]

...
Vn[k + 1]
Vh[k + 1]

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 . . . 0 0
0 a1 . . . 0 0
...

... . . .
...

...
0 0 . . . an 0
0 0 . . . 0 �(I[k])

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

z[k]
V1[k]

...
Vn[k]
Vh[k]

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

− Ts

3600Cn
0

b1 0
...

...
bn 0
0 �(I[k])

⎤
⎥⎥⎥⎥⎥⎦

[
I[k]

H(ż, T)

]
, (A.9)
Vb[k] = Voc(z[k]) − R0[k]I[k] −
n∑

i=1

Vi[k] − Vh[k]. (A.10)
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After discretization, this system becomes essentially indistin-
uishable from the discrete model form (2).
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